AMERICAN UNIVERSITY OF BEIRUT ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT EECE 340
 Homework II - Topic: System Properties Solution

Problem 1

The input-output relationship of a system is given by:

$$
y(t)=\int_{-\infty}^{+\infty}(-1)^{t} e^{\tau} x(\tau) d \tau
$$

a. Is this system stable? Justify your answer.

$$
|y(t)| \leq \int_{-\infty}^{+\infty}\left|(-1)^{t} e^{\tau} x(\tau)\right| d \tau \leq M \int_{-\infty}^{\infty} e^{\tau} d \tau=\infty
$$

Not stable
a. Is this system linear? Justify your answer.

Yes, apply the definition
b. Is this system Time invariant? Justify your answer.

No, the system is a time varying system

Problem 2

The input-output relationship of a system is given by:

$$
y(t)=x(t) x(t+1)-2 x(t-2)
$$

a. Is this system linear? Justify your answer.

System is not linear, because

$$
\begin{aligned}
& x_{1}(t) \rightarrow y_{1}(t)=x_{1}(t) x_{1}(t+1)-2 x_{1}(t-2) \\
& x_{2}(t) \rightarrow y_{2}(t)=x_{2}(t) x_{2}(t+1)-2 x_{2}(t-2) \\
& \begin{aligned}
a x_{1}(t)+b x_{2}(t) \rightarrow y(t)= & \left(a x_{1}(t)+b x_{2}(t)\right)\left(a x_{1}(t+1)+b x_{2}(t+1)\right)-2\left(a x_{1}(t-2)+b x_{2}(t-2)\right) \\
& \neq a y_{1}(t)+b y_{2}(t) \\
& =a x_{1}(t) x_{1}(t+1)+b x_{2}(t) x_{2}(t+1)-2\left(a x_{1}(t-2)+b x_{2}(t-2)\right)
\end{aligned}
\end{aligned}
$$

b. Is this system time-invariant? Justify your answer.

$$
\begin{aligned}
x(t) & \rightarrow x(t) x(t+1)-2 x(t-2)=\mathrm{y}(\mathrm{t}) \\
x\left(t-t_{0}\right) & \rightarrow x\left(t-t_{0}\right) x\left(t-t_{0}+1\right)-2 x\left(t-t_{0}-2\right)=y\left(t-t_{0}\right)
\end{aligned}
$$

Problem 3

Consider a system whose input-output relationship is given by:

$$
\frac{d y(t)}{d t}+4 t y(t)=2 x(t)
$$

a. Is this system linear? Justify your answer.

This is an ordinary Differential equation with coefficients $1,4 \mathrm{t}$, and 2 . Since these coefficients are independent of $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$, then the system is linear.
b. Is the system causal? Justify your answer.

Yes the system is causal as $y(t)$ does not depend on future values of $x(t)$ and $y(t)$.
c. Is the system memory-less? Justify your answer.

No because the derivative depends on previous values of $\mathrm{y}(\mathrm{t})$.

Problem 4

Determine whether each of the statements is true or False. You must Justify your answer to get a grade
a. If $y(t)$ is the output of a linear time-invariant system for an input $x(t)$, then $y(-t)$ is the output for the input $x(-t)$.
False. Easy to find Counterexamples
b. For an unstable system, every bounded input $\mathrm{x}(\mathrm{t})$ yields an output that is not bounded.
False. Take an LTI unstable system with zero input. The output is bounded.
c. If $x(t)$ is a periodic signal, then $x(t)+x(a t)$ is periodic for any real number a.

False. "a" must be rational

Problem 5

The response of an LTI system to a unit step input $x(t)=4 u(t)$ is $y(t)=$ $4\left(1-e^{-2 t}\right) u(t)$. What is the response to an input of $x(t)=4 u(t)-4 u(t-1)$?
$y_{1}(t)=4 y(t)-4 y(t-1)$ because the system is an LTI System.
$\mathrm{y}_{1}(\mathrm{t})=4\left(1-\mathrm{e}^{-2 \mathrm{t}}\right) \mathrm{u}(\mathrm{t})-4\left(1-\mathrm{e}^{-2(\mathrm{t}-1)}\right) \mathrm{u}(\mathrm{t}-1)$

Problem 6

a. Prove whether or not the system defined by: $y(t)=x(t) \cos [x(t)] \cdot \sin [x(t)]$

Is time invariant or not
The above system is time invariant as the response to $x(t-t 0)$ is $y(t-t 0)$
b. Prove if the system defined by $y(t)=[x(t-1)]+2$ is linear or not The above system is not linear as the response of $x_{1}(t)+x_{2}(t) \neq y_{1}(t)+y_{2}(t)$
c. Is the system defined by $y(t)=x\left(\frac{t}{3}\right)$ causal? Why or why not?

Not a causal system. For negative values of t , output depends on future values of the input. In fact $\mathrm{y}(-3)=\mathrm{x}(-1)$.

Problem 7

A system is defined by the input-output relationship given by:

$$
y(t)=x(t) \sin (2 t)+1
$$

a. Is this system linear? Justify your answer. No
b. Is this system time-invariant? Justify your answer? No
c. Is this system stable? Justify your answer. Yes
d. Is this system causal? Justify your answer. Yes

Problem 8

A system takes an input $\mathrm{x}(\mathrm{t})$ and produces the output $\mathrm{y}(\mathrm{t})$ given by

$$
y(t)=\int_{0}^{t} x(\tau) d \tau
$$

a. Is the system linear? Justify your answer

Yes, integration is a linear operator
b. Is the system time-invariant? Justify your answer.

System is not time invariant
Response to $\mathrm{x}\left(\mathrm{t}-\mathrm{t}_{0}\right)$ is $\int_{0}^{\mathrm{t}} \mathrm{x}\left(\tau-\mathrm{t}_{0}\right) \mathrm{d} \tau \neq \mathrm{y}\left(\mathrm{t}-\mathrm{t}_{0}\right)=\int_{0}^{\mathrm{t}-\mathrm{t}_{0}} \mathrm{x}(\tau) \mathrm{d} \tau$
c. Is the system stable? Justify your answer.

Not a stable system. Response to a bounded system $u(t)=t$ which is not bounded or $\mathrm{H}(\mathrm{s})=1 / \mathrm{s}$ (pole on the jw axis)
d. Is the system causal? Justify your work.

Yes, $h(t)=\int_{0}^{t} \delta(\tau) d \tau=u(t)$

Problem 9

Let H denote a continuous system such that the relationship between the input $f(t)$ and the output $y(t)$ is given by the equation

$$
y(t)-\frac{1}{2} y(t-1)=t f(t)
$$

Is the system linear? Justify your answer
Yes. Using the defined procedure. Or, coefficients are independent of input and output.

Problem 10

The output $y(t)$ of a continuous-time system is related to its input $x(t)$ by

$$
y(t)=\cos [2 x(t+1)]+x(t)
$$

a. Is the system linear? Justify your answer.

No. due to the cosine function
b. Is the system time-invariant? Justify your answer.

Yes, after we apply definition
c. Is the system causal? Justify your answer.

No, $\mathrm{y}(\mathrm{t})$ dependents on future values of $\mathrm{x}(\mathrm{t})$
d. Is the system memoryless? Justify your answer.

No, $y(t)$ depends on future values of $x(t)$
e. Is the system stable? Justify your answer.

Yes. $\mathrm{X}(\mathrm{t})$ is bounded and so is $\cos [2(\mathrm{x}(\mathrm{t}+1)]$. This implies that $\mathrm{y}(\mathrm{t})$ is bounded.

Problem 11

Consider a continuous-time system which has input of signal $x(t)$ and output of $y(t)$ $=\mathrm{x}(\mathrm{t}) \mathrm{u}(\mathrm{t})$. Is this system time invariant? Justify your answer.

$$
\begin{aligned}
& x(t) \rightarrow x(t) u(t) \\
& x\left(t-t_{0}\right) \rightarrow x\left(t-t_{0}\right) u(t) \neq y\left(t-t_{0}\right)=x\left(t-t_{0}\right) u\left(t-t_{0}\right)
\end{aligned}
$$

So the system is a time varying system

